
1

Visual Object to Audio Mapping Using

Stereovision

Michael Yeung (60955044), Neil Pahl (88483045)

Department of Electrical Engineering, University of British Columbia

Abstract—Stereovision allows us to recreate an object or

space in three dimensions from two or more two

dimensional images. Humans intrinsically have this

ability to perceive an object in a spatial area while any

man made image process does not because images are

received on a two dimensional plane. In this paper we

design a method to retrieve the three dimensional

information of an object in the field of view from two

stereovision sources and map it to a three dimensional

audio source. By primarily using the methods of template

matching and cross correlation, we develop a novel

method of retrieving this three dimensional information

and mapping it to an audio source to use as an object

locator for a visually impaired person.

I. Introduction

Stereovision is used every day by

human beings. It allows us to thread a needle

and catch a ball with exceptional proficiency.

Without out it, many things like backing into a

parking stall or shaking someone’s hand would

be an extremely difficult task to achieve.

Not only does it apply to nature, but

many man-made applications have arisen with

the need for artificially constructed stereo

vision solutions.

For instance, robots are a predominant

subject of stereovision [1] research. Many

automated systems need a reliable and passive

way to extract depth information of

surrounding objects. For example, many

automated mobile robots require range

information its surroundings to navigate

autonomously around obstacles.

While there are several different

methods of retrieving the 3D information of an

object, from structured light techniques [2] to

auditory methods [3].Stereo vision was used in

our project to retrieve our necessary 3D

information by acquiring two similar but offset

images from two planar vision sources,

detecting the object in our field of view and

processing the information to retrieve its X,Y,Z

co-ordinate in a normalized fashion.

For our project, the goal was to create a

proof of concept stereovision system that was

able to detect a single object within two 2D

images and output the object’s 3D co-ordinates

into a multi-dimensional auditory signal in the

form of a pulsed tone. Initially, the pulsed tone

will have dimensions of periodicity (depending

on depth in the field of view), fade (depending

on the lateral position) and pitch (depending on

the vertical position). We decided that

stereovision is an ideal technique to achieve our

goal.

Eventually this concept would be ideally

implemented and applied to situations where a

visually impaired person required object

awareness of their surrounding areas.

This paper is organized as follows. In

section II we provide some basic background

information about stereovision basics, and

cross-correlation. Section III we describe the

types of data and equipment used. Section IV

we provide our methods and algorithms.

Section V we summarize our results and

problems and finally offer a conclusion in

Section VI.

2

II. Background Information

A. Stereovision Basics
Vision systems capture images in two

dimensional forms where the horizontal and

vertical disparities can be recovered from a

single frame. However, the object’s depth in a

field of view requires some additional

processing methods.

For example, humans have two eyes

located side by side on a horizontal plane that

takes to two similar images at slightly different

angles. The brain then processes these slightly

offset images by looking at the dissimilarity

between the images and angle offsets to

reproduce the field of view in way we can

understand it in the X,Y,Z planes [4].

Figure 1 - Human Imaging Example

The function of stereovision is to

replicate this process of taking two (or more)

offset vision sources and deriving their three-

dimensional information given the disparity

found from comparing the data in from both

images.

B. Cross Correlation

Cross correlation is a signal processing

technique used to measure the similarity

between two offset signals [5]. It is commonly

used to rectify the delay caused by a long

duration signals (e.g. satellite communication),

but more importantly for us, pattern

recognition.

Cross Correlation is similar in nature to

convolution. While convolution flips and slides,

correlation only slides.

In our case we used the discrete

definition of cross correlation (Figure 2)

because it enabled us to find the disparity or

offset between the images from each camera.

Figure 2 - Discrete Cross Correlation Definition

MATLAB made this a fairly painless

process with the availability of xcorr() and corr()

functions in both one and two dimensional

forms. However because of computational

intensity of these types of iterative functions

they should only be used sparingly to save

processing time of any system.

III. Materials

The project required two vision sources

dynamically inputting data into the MATLAB

environment. Doing this was accomplished by

purchasing two cost-effective Pixxo AW-I1130

webcams, using our own laptop and the

MATLAB environment

3

Figure 3 – Webcam/LAPTOP to MATLAB Setup

As shown in Figure 3, the two webcams

(bottom left hand corner) are connected to the

laptop which directly feed the data obtained

from each camera into MATLAB. It is then

passed through object and audio processing

blocks respectively. Finally the processed data is

outputted to an audio source (in our case our

laptop speakers) as a WAV[6] file .

It is also important to note that because

this was only a proof of concept, we were

aiming to detect a single object on a clean white

background.

This was justified by the fact that this

system was going to be fully automated and

multiple object detection would have made the

objectives exponentially harder. Moreover, for

“noisy” backgrounds this created various other

signal processing problems which resulted in

additional computational power needed that

we did not have the resources to obtain.

Therefore we decided upon using a two

webcam system which detects a single object

on a clean background because it was still able

to provide a good proof of concept of our audio

mapping system working.

IV. Methods and Algorithms

Our project can be broken down into

two main processing blocks. The first is the

object processing block where the raw data

from the cameras is processed to the point

where an object can be detected in spatial field

and its location can be defined in a three-

dimensional co-ordinate system.

With the object’s location in the form of

a single three-dimensional co-ordinate, this

data is inputted into the audio processing block

which takes this information and converts this

into a three dimensional pulsed tone.

A. Object Processing Block

Before any image processing was done we

first took the color image and converted it into

its HSV components where we then only took

only the saturation components of each camera

source.

Because a white background has a very low

saturation component, we were able to assume

that any object in the field of view would have a

high enough saturation component that we

could distinguish from the background.

Figure 4 - Left Camera Saturation Only Image

4

Figure 5 - Right Camera Saturation Only Image

Figure 6 - Original Color Image All Components

Figure 3, 4 and 5 show the results of

converting the image into its saturation

components only compared to the original data

collected by the cameras

To determine where an object is in 3D

space, we must locate the object in the 2D

space of both the left and right image. To do

this, we use the method of template matching

[7][8]. This method involves localization of

subsections from the target (left) image with

respect to the reference (right) image. I our

case, we divide the left image into a 6x8 grid of

sub images (Figure 7), where each is first

checked to see whether it contains an object.

Figure 7 - Left Image Divided Into Sub Images

To make this judgment, we must recognize

the following properties of a box containing an

object. If a box from the target image contains

an object, that object must also be present in

the reference image, but offset horizontally. If

there is no horizontal offset between an object

in the two images, the object can be assumed

to be far away and not detected. Objects which

are nearby will show large horizontal offsets

between the left and right images.

In our implementation, however, some

measures are taken to enhance the robustness

of our detection system. Each sub image is

reduced to a row vector containing the max

value of each column in the image (Figure 8).

Figure 8 - MATLAB Grid and Row Code

 For example, Figure 9 is the row vector

which corresponds to the 4
th

 row in Figure 7.

Doing this, allows us more flexibility with

MATLAB functions and some resistance against

misaligned cameras.

5

Figure 9 – Max Values of Left Image Row 4

To observe an offset between the right and

left image, we cross correlated each target box

with the entire row in both the left and right

images. The point where the cross correlation

has the greatest value is where the target box

resides in the image. MATLAB returns the shift

of the cross correlation as a lag (Figure 10).

Figure 10 - MATLAB Cross Correlation Code

After finding the lag of the left and right

image, the difference gives us the horizontal

offset of the target box.

We then insert the horizontal offsets into

the 6x8 obj_disparity matrix. This matrix

represents our disparity map, providing the

depth of objects in our field of view with a

horizontal and vertical resolution of 8 columns

and 6 rows. When an object is present in the

field of view, the obj_disparity matrix will have

a non-zero value in the corresponding matrix

element. obj_disparity elements with large

disparity values are perceived to be near while

smaller values represent farther objects.

B. Audio Processing Block

After the disparity map has been

determined, the 3D information is available to

be mapped into the audio space. The audio

processing block maps the 3D visual

information into a pulsed tone signal which can

alert the user about the location of object in

view. The horizontal location is mapped to fade,

the vertical location is mapped to pitch, and the

depth of the object is mapped to pulsing

frequency of the tone. Because each non-zero

element in the obj_disparity matrix represents

an object in that grid location, a tone signal is

created to represent that object. The fade ratio

and pitch frequency of the object is mapped via

the following MATLAB code in Figure 11.

Figure 11 - MATLAB Fade and Pitch Code

Where jj and ii is the column and row of the

obj_disparity matrix, repectively. boxNumX and

boxNumY is the number of object grid boxes in

the x and y. The fade calculation calculates the

fade ratio between left and right audio channel.

The pitch calculation maps a high frequency to

objects which are above in the image. Using

these parameters, a signal for these grid

locations are created as shown in Figure 12.

Figure 12 - MATLAB Object Audio Signal Code

 At this point, the fade is only

contributing to a phase offset to the left and

right audio signal. This aids in the user’s ability

to detect the direction. However, to provide a

more user friendly output, the actual fade and

pulse frequency is implemented during the last

stage using average values of all the present

objects. This way, any discrepancies in fade and

disparities will not confuse the listener. To do

6

this, the values of fade and disparity are loaded

into an array which is averaged in a later stage.

 In the final stage, the depth pulse effect

is created by multiplying the output signal by a

square wave of the desired pulse frequency.

The Square wave also exhibits a phase delay

between left and right audio. Figure 13 contains

the final stage of the audio output block.

Figure 13 - MATLAB Final Stage Audio Output Code

V. Problems and Results

A. Object Detection Problems

Originally we set up our system to do the

correlation between the right and left cameras

after we had grey scaled and Canny Edged [9]

the image. We soon found out the method of

taking the object location at the max correlation

point was extremely inconsistent and we could

never obtain reliable image information.

Figure 14- Original Preprocessed Image

Figure 15- Canny Edge Filtered Object after Grey Scaling

Figure 16 - Correlation of Canny Edge Filtered Object

As you can see in Figure 16 the

correlation algorithms would always give us

outliers which routinely would be larger than

the correlation coefficients where the object

was located. Moreover the magnitudes of the

correlation would jump all over the place

However once we changed our method and

used the saturation component of an image, we

were able to determine an object’s horizontal

location as shown in the results for Figure 9 for

an object shown in Figure 6.

0 50 100 150 200 250 300 350
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X Pixel Position

C
o
rr

e
la

ti
o
n

Corrrelation Coeffs vs X Position (Canny Fitlered)

7

B. MATLAB Performance Problems

Because the whole system is entirely

software based we relied on many performance

intensive instruction sets such as cross-

correlation and for loop iterations to achieve

our goals.

Upon testing, the system could only 1-2 full

computations cycles per second. More relevant

though is the fact that the proof of concept

works and a hardware based solution for our

problem could significantly increase the

performance

C. Results

To represent objects at different 3D

locations, we adhered paper cut-outs to a white

wall and captured the left and right images of

these objects using two web cameras which are

feed directly into a laptop for MATLAB

processing. The camera and laptop combination

were kept together on a table and the whole

table would be moved to different distances

from the wall. Figure 17 shows this setup.

Figure 17 - Experimental Setup

The object processing block would build

the obj_disparity matrix which contained the 3D

data extracted from the two initially captured

images. Each element in the obj_disparity

matrix, if non-zero, represents an object in 3D

space. The X coordinate is given by the column

in the matrix, The Y coordinate is given by the

row in the matrix, and the Z coordinate (depth)

corresponds with the value (disparity) of the

element.

 Using the template matching

algorithms, we were able to create an object

map with the locations of the multiple objects

all contained inside the obj_disparity matrix as

shown in Figure 18-31

Figure 18 - Multiple Object Detection

However, as our design was originally

specified to locate one object, the audio

processing block cannot adequately output

sounds that map these object to the audio

domain intuitively. Also, because of the thresh

holding stages, rows with multiple objects have

high correlation with both objects and can

result in inaccurate disparity measurements

(Figure 18). This can possibly be corrected if the

object in the image has more entropy, such that

the highest correlation will only occur when it is

overlapping itself.

 When observing a single object, audio

mapping can be completed for a given

obj_disparity matrix. Figure 19, Figure 20, and

Figure 21 illustrate the audio output of varying

8

fade (X coordinate) and frequency (Y

coordinate) as created from a single object

located in the field of view of the cameras.

When an object is higher up in the field of view,

the frequency is higher. The amplitudes of the

output left and right sound channels are

weighted accordingly depending on the column

(X coordinate) of the object.

Figure 19 - Object at Row 1 Column 5

Figure 20 - Object at Row 1 Column 8

Figure 21 - Object at Row 5 Column 2

For larger objects that fill more elements in

the obj_disparity matrix, the signals created

from each element are summed together so

that a user can realize larger objects via the

presence of more tones.

To show the depth, the summed tones are

pulsed at a frequency, relating to the average

value of the disparity elements present in the

object. Figures 22-31 show how the audio

signals pulse according to distance. In these

figures, the top right and bottom right images

are the captured images of the left and right

web cameras, respectively. Closer objects have

a faster pulsed tone.

Figure 22 - Object at 0.30m

9

Figure 23 - Object at 0.40m

Figure 24 - Object at 0.50m

Figure 25 - Object at 0.60m

Figure 26 - Object at 0.70m

Figure 27 - Object at 0.80m

Figure 28 - Object at 0.90m

10

Figure 29 - Object at 1.00m

Figure 30 - Object at 1.25m

Figure 31 - Object at 1.65m

 The system is more sensitive to near

objects, because the change in disparity per

distance is larger. A distant object has very little

disparity change as the distance is changed, and

therefore will less accurately map the depth of

a far away object.

D. Future Work

Our system was designed with the

assumption that only one object was in the field

of view. When our cameras were presented

with multiple objects, the algorithms do not

process the information properly. However, if

some adjustments were made to the object

disparity algorithms we believe that support for

multiple objects is achievable.

Ideally, template matching would allow us

to have a noisy background because the

background scenery will have little to no

disparity, and thus can be filtered out. However,

our initial thresh holding stages reduce the

entropy of target sub images and allow for non-

unique disparities for rows with multiple

objects. These thresh holding stages allow for

more robust single object detection as a design

trade-off.

Alternatively, for the problems encountered

by the background we believe a method like the

one presented by Richard Graetz and Kris

Smeds in their “Visual Object” presentation [10]

could provide us a solution to our reliance on a

clean white background.

VI. Conclusion

 In this paper we successfully developed

a novel way of detecting an object in the field of

two stereovision sources by using the methods

of template matching and cross-correlation and

mapping it to a three dimensional audio source.

11

The object processing block was

successfully able to distinguish an object in the

cameras fields of view and determines its X,Y,Z

co-ordinates using the methods of template

matching and cross-correlation across the

cameras. This information was then inputted

into our audio processing block which

converted this information into an audio signal

with a variable frequency, fade and amplitude

as shown in Figures 18-31.

 In conclusion we provided proof of

concept that our three dimensional visual to

audio mapping system can achieve our

objectives and with a little fine tuning we can

create a robust system that can track and

output multiple objects in a real-life

environment.

 VII. References
[1] Sokolova, Katrina, and Barak Shilo.

"Experiments in Stereo Vision." 12 Dec. 2006.

California State University. 12 Nov. 2008.

[2] Silva, Jorge A., Aurelio J. Campilho, and

Marque Santos. 3-D Data Acquisition and Scene

Segmentation System 3 (1996): 563-67.

[3] Cheng, Binbin, and Hai Zhang. "A

computational Model for bats’ echolocation

based on mammalian auditory system." A

computational Model for bats’ echolocation

based on mammalian auditory system (2008):

1436-440.

[4] Visual Perception. 11 Dec. 2008. Wikipedia.

11 Dec. 2008

<http://en.wikipedia.org/wiki/visual_perceptio

n>.

[5] Abugharbieh,. Rafeef. "EECE 466 Digital

Signal Processing - Cross Correlation."

University of British Columbia. Fall 2008.

[6] Wilson, Scott. "WAVE PCM soundfile

format." EE367C Course Website. 20 Jan. 2003.

Stanford University. 12 Dec. 2008

<http://ccrma.stanford.edu/courses/422/projec

ts/waveformat/>.

[7] Mattoccia, S., F. Tombari, and L. Di Stefano.

" Fast Full-Search Equivalent Template

Matching by Enhanced Bounded Correlation."

Image Processing IEEE Transactions on 17

(2008): 528-38.

[8] Template Matching 11 Dec. 2008.

Wikipedia. 11 Dec. 2008

<http://en.wikipedia.org/wiki/Template_matchi

ng>.

 [9] Duraiswami, Ramani, and Luo Yuancheng.

"Canny edge detection on NVIDIA CUDA."

Computer Vision and Pattern Recognition

Workshops. College Park, MD. 23 June 2008.

 [10] Graetz, Richard, and Kris Smeds. "Visual

Object Tracking." EECE 466 Project

Presentations. University of British Columbia. 27

Nov. 2008.

12

VIII. MATLAB Appendices

data = getsnapshot(vid);
data2 = getsnapshot(vid2);

datahsv = rgb2hsv(data);
datahsv2 = rgb2hsv(data2);

vidSizeX = 320;
vidSizeY = 240;
boxX = 40; %must divide equaly into vidSizeX
boxY = 40; %must divide equaly into vidSizeY
boxNumX = vidSizeX / boxX;
boxNumY = vidSizeY / boxY;

targ_im = datahsv(:,:,2); % left camera -> this image will contain the

targets
refr_im = datahsv2(:,:,2); % Right Camer -> this image will be used as

reference

Fs = 44100 ; % Sample Rate of Output Sound
t = 1/Fs:1/Fs:1;
stereo_out = zeros(length(t),2);

obj_disparity = zeros(boxNumY,boxNumX);
depth_ok = [];
fade_delay = [];

for ii = 1:(boxNumY)
% ii=3;

 ytarg_start = (ii-1)*boxY+1;
 ytarg_end = ytarg_start+(boxY-1);
 target_row = max(targ_im(ytarg_start:ytarg_end, 1:320));
 target_row = single(im2bw(target_row, .2));

 yrefr_start = (ii-1)*boxY+1;
 yrefr_end = yrefr_start+(boxY-1);
 refr_row = max(refr_im(yrefr_start:yrefr_end, 1:320));
 refr_row = single(im2bw(refr_row, .2));

 for jj = 1 : boxNumX

 xtarg_start = (jj-1)*boxX+1;
 xtarg_end = xtarg_start+(boxX-1);
 target = single(target_row(xtarg_start:xtarg_end));

 [corr_val1,lag_l] = xcorr(target,target_row);
 [corr_val2,lag_r] = xcorr(target,refr_row);

13

 corrLag_L = [corr_val1' lag_l'];
 corrLag_R = [corr_val2' lag_r'];

 max_corr_val1 = max(corr_val1);
 max_corr_val2 = max(corr_val2);

 Lag_L = 0;
 Lag_R = 0;

 for zz = 1:length(corr_val1)

 if(corrLag_L(zz,1) == max_corr_val1)
 Lag_L = corrLag_L(zz,2);
 end
 if(corrLag_R(zz,1) == max_corr_val2)
 Lag_R = corrLag_R(zz,2);
 end
 end
% end

 obj_disparity(ii,jj) = Lag_R-Lag_L;

 %create sound for this box
 if(obj_disparity(ii,jj) > 0 && obj_disparity(ii,jj) < 100)

 depth_ok = [depth_ok obj_disparity(ii,jj)];

 fade = jj/boxNumX;
 fade_delay = [fade_delay fade];
 pitch = (boxNumY-ii)/boxNumY * 400 + 125;

 signal_L = sin(2*pi*pitch*t +.2*(0.5-fade));
 signal_R = sin(2*pi*pitch*t +.2*(0.5-(1-fade)));

 stereo_out = stereo_out + [signal_L' signal_R'];
% wavplay(stereo_out,Fs)
 end
 end

end

pulse_f = mean(depth_ok)/10;
mean_fade = mean(fade_delay);
depth_pulse_L = 0.5*square(2*pi*pulse_f*t +.2*(0.5-mean_fade))+0.5;
depth_pulse_R = 0.5*square(2*pi*pulse_f*t +.2*(0.5-(1-mean_fade)))+0.5;
stereo_out = stereo_out.*[(depth_pulse_L*(1-mean_fade))'

(depth_pulse_R*(mean_fade))'];
 wavplay(stereo_out,Fs)

 figure(3)
plot(stereo_out)

